1 誘電体と分極

誘電体：自由に動ける電荷がない外部電場により、
電荷分布が変化して分極する：誘電分極現象の電荷：分極電荷

分極ベクトルP 分極電荷の移動した方向のベクトルで、大きさはそのベクトルに直角な単位面積あたりの分極電荷の量で定義

分極電荷の密度：ρ_d

$$
\rho_d \Delta x \Delta y \Delta z = [P_x(x) - P_x(x + \Delta x)]\Delta y \Delta z \\
+ [P_y(y) - P_y(y + \Delta y)]\Delta x \Delta z \\
+ [P_z(z) - P_z(z + \Delta z)]\Delta x \Delta y
$$

$$
= - \text{div} P \Delta x \Delta y \Delta z
$$

$$
\text{div} P = - \rho_d
$$

微小体積：ΔV、P：双極子モーメントの平均値、
ΔN：ΔV 内に存在する双極子モーメントの数

$$
P \Delta V = \Delta N p
$$

誘電体中の双極子の作る静電ポテンシャル（$N(r)$：
r での双極子モーメントの数密度）

$$
\phi_d(r) = \frac{1}{4\pi \varepsilon_0} \sum_i \mathbf{p}_i \cdot (\mathbf{r} - \mathbf{r}_i)
$$

$$
= \frac{1}{4\pi \varepsilon_0} \int \frac{N(r') \mathbf{p}(r') \cdot (\mathbf{r} - \mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|^3} d^3 r'
$$

$$
\text{div} \left\{ \frac{N(r') \mathbf{p}(r')}{|\mathbf{r} - \mathbf{r}'|^3} \right\} = \frac{N(r') \mathbf{p}(r') \cdot (\mathbf{r} - \mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|^3}
$$

$$
+ \frac{\text{div}' [N(r') \mathbf{p}(r')]}{|\mathbf{r} - \mathbf{r}'|}
$$

$$
\text{div}' r' に対する微分演算：左辺は表面積分に
変換 → 十分遠方で 0

$$
\phi_d(r) = \frac{1}{4\pi \varepsilon_0} \int \frac{\text{div}' [N(r') \mathbf{p}(r')]}{|\mathbf{r} - \mathbf{r}'|} d^3 r'
$$

2 簡単な誘電体のモデル

物質を構成する電子：原子核の回りに均衡 → 平衡
点からの電子の変位：\mathbf{x} 、電子（質量 m）の運動
方程式は

$$
m \ddot{\mathbf{x}} + \text{grad} U = -e \mathbf{E}
$$

U：束縛力のポテンシャルエネルギー、e：電気素量
(1.6×10^{-19})

等方調和振動子モデル

$$
U(x_0 + x) = U_0 + \frac{1}{2} k x^2
$$

正弦振動 $E(t) = E(\omega)e^{i \omega t}$、$x(t) = x(\omega)e^{i \omega t}$

$$
x(\omega) = \frac{e}{m(-\omega^2 + \omega_0^2)} E(\omega) (\omega_0 = \sqrt{k/m})
$$

注1 物質によっては、誘電体に代表されるように外部電場が
無くても分極が存在するものがある。また、電場が強いと分極
電場は比例しない故非線形になる。

注2 同様に磁化と磁場の関係が非線形の場合、磁気感受率とい
う量が定義される。そこで、電気感受率を ε_0 と磁気感受率を
m_0 と書く場合もある。

注3 速度が速い場合のみを考えて、磁場による力は無視した。

注4 磁性の媒質では異方向性をもつ場合がある。
誘起双極子モーメント：$-en\chi$、電子数密度：N 個

$$
\mathbf{P}(\omega) = -Ne\chi(\omega) = \frac{Ne^2}{m(-\omega^2 + \omega_0^2)}\mathbf{E}(\omega) \tag{19}
$$

電気感受率：$
\chi(\omega) = \frac{Ne^2}{m(-\omega^2 + \omega_0^2)}
$

誘電率：$
\mathbf{D}(\omega) = [\varepsilon_0 + \chi(\omega)]\mathbf{E}(\omega) = \varepsilon(\omega)\mathbf{E}(\omega)
\$

$
\omega^2 \ll \omega_0^2 \rightarrow \chi \text{ は定数} \rightarrow \mathbf{D} = \varepsilon\mathbf{E}
$

複素電気感受率

$$
\chi(\omega) = \chi'(\omega) - i\chi''(\omega) \tag{21}
$$

運動方程式に散逸項が存在する場合

$$
m(\dot{x} + \gamma x + \omega_0^2 x) = -en\mathbf{E} \tag{22}
$$

$$
\chi(\omega) = \left(\frac{Ne^2}{m}\right) \frac{1}{\omega_0^2 - \omega^2 + \gamma \omega} \tag{23}
$$

$$
\chi'(\omega) = \left(\frac{Ne^2}{m}\right) \frac{\omega_0^2 - \omega^2}{(\omega_0^2 - \omega^2)^2 + \gamma^2 \omega^2} \tag{24}
$$

$$
\chi''(\omega) = \left(\frac{Ne^2}{m}\right) \frac{\omega \gamma}{(\omega_0^2 - \omega^2)^2 + \gamma^2 \omega^2} \tag{25}
$$

χ''：運動方程式の散逸項と結びついている

3 物質中の電磁場のエネルギー

$\mathbf{P} \rightarrow \mathbf{P} + \delta\mathbf{P}$ や $\mathbf{M} \rightarrow \mathbf{M} + \delta\mathbf{M}$ に必要な単位体積あたりの仕事

$$
\delta W = \mathbf{E} \cdot \delta\mathbf{P} + \mu_0\mathbf{H} \cdot \delta\mathbf{M} \tag{26}
$$

電磁エネルギーの変化率

$$
\frac{\partial \mathbf{u}}{\partial t} = \mathbf{E} \cdot \frac{\partial \mathbf{D}}{\partial t} + \mathbf{H} \cdot \frac{\partial \mathbf{B}}{\partial t} \tag{27}
$$

$$
\frac{\partial \mathbf{u}}{\partial t} = \frac{\partial \mathbf{u}_0}{\partial t} + \mathbf{E} \cdot \frac{\partial \mathbf{P}}{\partial t} + \mu_0\mathbf{H} \cdot \frac{\partial \mathbf{M}}{\partial t} \tag{28}
$$

$$
u_0 = \frac{\varepsilon_0}{2}E^2 + \frac{\mu_0}{2}H^2 \tag{29}
$$

$$
\text{div} \, \mathbf{S} = \text{div} \, \mathbf{(E \times H)} = \text{rot} \, \mathbf{E} \cdot \mathbf{H} - \mathbf{E} \cdot \text{rot} \, \mathbf{H}
\quad \quad \quad \quad \quad \quad \quad \quad \quad = -\frac{\partial \mathbf{B}}{\partial t} \cdot \mathbf{H} - \mathbf{E} \cdot \left(\frac{\partial \mathbf{D}}{\partial t} + \mathbf{i}\right) \tag{30}
$$

$$
\frac{\partial u}{\partial t} + \text{div} \, \mathbf{S} = -\mathbf{E} \cdot \mathbf{i} \tag{31}
$$

分極の影響 ($i = 0$, $M = 0$)

$$
\frac{\partial u_0}{\partial t} + \text{div} \, \mathbf{S} = -\mathbf{E} \cdot \frac{\partial \mathbf{P}}{\partial t} \tag{32}
$$

$$
\Re \left[\mathbf{E}(\omega)e^{i\omega t} \right] = E_0 \cos \omega t \tag{33}
$$

$$
\Re \left[\mathbf{P}(\omega)e^{i\omega t} \right] = E_0[I\chi'(\omega) \cos \omega t + \chi''(\omega) \sin \omega t] \tag{34}
$$

$$
-\mathbf{E} \cdot \frac{\partial \mathbf{P}}{\partial t} = \frac{\omega E_0^2}{2} \left[\chi'(\omega) \sin 2\omega t - \chi''(\omega)(\cos 2\omega t + 1) \right] \tag{35}
$$

時間平均

$$
-\mathbf{E} \cdot \frac{\partial \mathbf{P}}{\partial t} = -\frac{\omega E_0^2}{2} \chi''(\omega) \tag{36}
$$

複素電気感受率の虚部：エネルギーの散逸を表す

4 デバイ緩和

極性分子などの配向：大きな分極を発生（配向分極）→ 緩和型の運動方程式（外場なし、τ: 緩和時間）

$$
\frac{d\mathbf{P}}{dt} = -\frac{1}{\tau}\mathbf{P} \tag{37}
$$

静的な外場

$$
\mathbf{P}_{dc} = \chi_0\mathbf{E}_{dc} \tag{38}
$$

外場中の運動方程式

$$
\tau \frac{d\mathbf{P}(t)}{dt} + \mathbf{P}(t) = \chi_0\mathbf{E}(t) \tag{39}
$$

$$
\mathbf{E}(t) = \mathbf{E}(\omega)e^{i\omega t}, \quad \mathbf{P}(t) = \mathbf{P}(\omega)e^{i\omega t}
\$$

$$
\mathbf{P}(\omega) = \frac{\chi_0}{1 + i\omega\tau}\mathbf{E}(\omega) \tag{40}
$$

$$
\chi(\omega) = \frac{\chi_0}{1 + i\omega\tau} \tag{41}
$$

$$
\chi'(\omega) = \frac{\chi_0}{1 + \omega^2\tau^2} \tag{42}
$$

$$
\chi''(\omega) = \frac{\omega\tau\chi_0}{1 + \omega^2\tau^2} \tag{43}
$$

虚部：$\omega\tau = 1$ で最大
配向分極の緩和（デバイ緩和）: ラジオ波からマイクロ波の周波数で顕著

5電子分極の場合、共振周波数は紫外光の領域となる。